Human Reproduction
Reproduction is an essential process for the survival of a species. The functions of the reproductive systems are to produce reproductive cells, the gametes, and to prepare the gametes for fertilization. In addition, the male reproductive system delivers the gametes to the female reproductive tract. The female reproductive organs nourish the fertilized egg cell and provide an environment for its development into an embryo, a fetus, and a baby.
Human reproduction takes place by the coordination of the male and female reproductive systems. In humans, both males and females have evolved specialized organs and tissues that produce haploid cells, the sperm and the egg. These cells fuse to form a zygote that eventually develops into a growing fetus. A hormonal network is secreted that controls both the male and female reproductive systems and assists in the growth and development of the fetus and the birthing process.
Female Reproductive System
The organs of female reproduction include the ovaries, two oval organs lying within the pelvic cavity, and adjacent to them, two fallopian tubes. Also known as oviducts, the fallopian tubes are the passageways that egg cells enter after release from the ovaries. The fallopian tubes lead to the uterus (womb), a muscular organ in the pelvic cavity. The inner lining of the uterus, called the endometrium, thickens with blood and tissue in anticipation of a fertilized egg cell. If fertilization fails to occur, the endometrium degenerates and is shed in the process of menstruation.
The opening at the lower end of the uterus is a constricted area called the cervix. The tube leading from the cervix to the exterior is a muscular organ called the vagina. During periods of sexual arousal, the vagina receives the penis and the semen. The sperm cells in the semen pass through the cervix and uterus into the fallopian tubes, where fertilization takes place.
In the human female, egg cell production begins before birth, when about 2 million primitive cells known as oogonia accumulate in the ovaries. These oogonia are formed in the early stages of meiosis. After the age of puberty, the oogonia develop into primary oocytes and then into egg cells at a rate of one per month. Egg cell production occurs by the process of meiosis.
The egg cells develop within the ovary in a cluster of cells called the Graafian follicle, which secretes the female hormone estrogen that regulates the development of secondary female characteristics. Egg cell development within the follicle requires approximately 14 days. The development is controlled by two hormones: follicle-stimulating hormone (FSH) and luteinizing hormone (LH). Both hormones are secreted by the anterior lobe of the pituitary gland.
During the 14 days of egg cell development, the endometrium increases its supply of blood and nutrients in anticipation of a fertilized egg cell. On about the 14th day, the release of the egg cell from the follicle takes place. This process is called ovulation. The egg cell is swept into the fallopian tube and begins to move toward the uterus. Meanwhile, the follicle is changed into a mass of cells known as the corpus luteum. The LH stimulates the conversion. The corpus luteum then secretes the hormone progesterone, which together with estrogen continues to regulate the buildup of tissue in the endometrium and inhibit contractions of the uterus.
The egg cell remains alive in the fallopian tubes for 24 to 72 hours. If fertilization by a sperm cell fails to occur, the egg cell moves toward the uterus, and the corpus luteum begins to degenerate. This degeneration causes the level of progesterone and estrogen to drop off. Within two weeks, the hormone levels decline to a point where they cannot inhibit contractions of the uterus. Uterine contractions then occur, and the endometrium is released in the process of menstruation. Follicle development begins again, but in the opposite ovary.
No comments:
Post a Comment